OPERATIONS RESEARCH (Professional Elective – II)

B.Tech. IV Year I Sem.

Course Code: ME724PE/MT734PE/AM743PE

3 0/0/0 3

Course Objectives: Understanding the mathematical importance of development of model in a particular optimization model for the issue and solving it.

Course Outcome: Understanding the problem, identifying variables & constants, formulas of optimization model and applying appropriate optimization Tech

UNIT - I

Development – Definition– Characteristics and Phases – Types of models – Operations Research models – applications.

Allocation: Linear Programming Problem - Formulation - Graphical solution - Simplex method - Artificial variables techniques: Two-phase method, Big-M method; Duality Principle.

UNIT - II

Transportation Problem – Formulation – Optimal solution, unbalanced transportation problem – Degeneracy.

Assignment problem – Formulation – Optimal solution - Variants of Assignment Problem; Traveling Salesman problem.

UNIT - III

Sequencing – Introduction – Flow –Shop sequencing – n jobs through two machines – n jobs through three machines – Job shop sequencing – two jobs through 'm' machines-graphical model. **Replacement:** Introduction – Replacement of items that deteriorate with time – when money value is not counted and counted – Replacement of items that fail completely- Group Replacement.

UNIT - IV

Theory of Games: Introduction –Terminology– Solution of games with saddle points and without saddle points- 2 x 2 games –m x 2 & 2 x n games - graphical method – m x n games - dominance principle.

Inventory: Introduction – Single item, Deterministic models – Types - Purchase inventory models with one price break and multiple price breaks –Stochastic models – demand discrete variable or continuous variable – Single Period model with no setup cost.

UNIT - V

Waiting Lines: Introduction—Terminology-Single Channel—Poisson arrivals and Exponential Service times — with infinite population and finite population models— Multichannel — Poisson arrivals and exponential service times with infinite population.

Dynamic Programming: Introduction – Terminology- Bellman's Principle of Optimality – Applications of dynamic programming- shortest path problem – linear programming problem.

TEXT BOOKS:

- 1. Operations Research / N.V.S. Raju / SMS
- 2. Operations Research / ACS Kumar / Yes Dee

REFERENCE BOOKS:

- 1. Operations Research /J. K. Sharma / MacMilan.
- 2. Operations Research / A. M. Natarajan, P. Balasubramaniam, A. Tamilarasi / Pearson.